The Universe seems to be looking younger every day.

New calculations suggest the Universe could be 2-B years younger than scientists now estimate, and even younger than suggested by 2 other calculations published this year that trimmed hundreds of millions of years from the age of the cosmos.

The huge swings in scientists’ estimates, even this new calculation could be off by billions of years reflect different approaches to the tricky problem of figuring the Universe’s real age.

*“We have large uncertainty for how the stars are moving in the galaxy,*” said Inh Jee, of the Max Plank Institute in Germany, lead author of the study in Thursday’s journal *Science *.

Scientists estimate the age of the universe by using the movement of stars to measure how fast it is expanding. If the Universe is expanding faster, that means it got to its current size more quickly, and therefore must be relatively younger.

The expansion rate, called the Hubble constant , is one of the most important numbers in cosmology. A larger Hubble Constant makes for a faster moving and younger Universe.

The generally accepted age of the Universe is 13.7-B years, based on a Hubble Constant of 70.

Jee’s team came up with a Hubble Constant of 82.4, which would put the age of the Universe at around 11.4-B years.

Ms. Jee used a concept called gravitational lensing, that is where gravity warps light and makes far away objects look closer. They rely on a special type of that effect called time delay lensing, using the changing brightness of distant objects to gather information for their calculations.

But Ms. Jee’s approach is just 1 of a few new ones that have led to different numbers in recent years, reopening a simmering astronomical debate of the 1990’s that had been seemingly settled.

In Y 2013, a team of European scientists looked at leftover radiation from the Big Bang and pronounced the expansion rate a slower 67, while earlier this year Nobel Prize winning astrophysicist Adam Riess of the Space Telescope Science Institute used NASA’s super telescope and came up with a number of 74. And another team earlier this year came up with 73.3.

Ms. Jee and outside experts had big caveats for her number. She used only 2 gravitational lenses, which were all that were available, and so her margin of error is so large that it’s possible the Universe could be older than calculated, not dramatically younger.

Harvard astronomer Avi Loeb, who was not part of the study, said it an interesting and unique way to calculate the Universe’s expansion rate, but the large error margins limits its effectiveness until more information can be gathered.

“*It is difficult to be certain of your conclusions if you use a ruler that you don’t fully understand,*” Mr. Loeb said in an e-Mail.

Stay tuned…